Pattern Matching

Chapter Goals

This chapter will introduce two new concepts: algebraic data types, and pattern matching. We will also briefly cover an interesting feature of the PureScript type system: row polymorphism.

Pattern matching is a common technique in functional programming and allows the developer to write compact functions which express potentially complex ideas, by breaking their implementation down into multiple cases.

Algebraic data types are a feature of the PureScript type system which enable a similar level of expressiveness in the language of types - they are closely related to pattern matching.

The goal of the chapter will be to write a library to describe and manipulate simple vector graphics using algebraic types and pattern matching.

Project Setup

The source code for this chapter is defined in the file src/Data/Picture.purs

The project uses some packages which we have already seen, and adds the following new dependencies:

  • globals, which provides access to some common JavaScript values and functions.
  • math, which provides access to the JavaScript Math module.

The Data.Picture module defines a data type Shape for simple shapes, and a type Picture for collections of shapes, along with functions for working with those types.

The module imports the Data.Foldable module, which provides functions for folding data structures:

module Data.Picture where

import Prelude
import Data.Foldable (foldl)

The Data.Picture module also imports the Global and Math modules, but this time using the as keyword:

import Global as Global
import Math as Math

This makes the types and functions in those modules available for use, but only by using qualified names, like Global.infinity and Math.max. This can be useful to avoid overlapping imports, or just to make it clearer which modules certain things are imported from.

Note: it is not necessary to use the same module name as the original module for a qualified import. Shorter qualified names like import Math as M are possible, and quite common.

Simple Pattern Matching

Let's begin by looking at an example. Here is a function which computes the greatest common divisor of two integers using pattern matching:

gcd :: Int -> Int -> Int
gcd n 0 = n
gcd 0 m = m
gcd n m = if n > m
            then gcd (n - m) m
            else gcd n (m - n)

This algorithm is called the Euclidean Algorithm. If you search for its definition online, you will likely find a set of mathematical equations which look a lot like the code above. This is one benefit of pattern matching: it allows you to define code by cases, writing simple, declarative code which looks like a specification of a mathematical function.

A function written using pattern matching works by pairing sets of conditions with their results. Each line is called an alternative or a case. The expressions on the left of the equals sign are called patterns, and each case consists of one or more patterns, separated by spaces. Cases describe which conditions the arguments must satisfy before the expression on the right of the equals sign should be evaluated and returned. Each case is tried in order, and the first case whose patterns match their inputs determines the return value.

For example, the gcd function is evaluated using the following steps:

  • The first case is tried: if the second argument is zero, the function returns n (the first argument).
  • If not, the second case is tried: if the first argument is zero, the function returns m (the second argument).
  • Otherwise, the function evaluates and returns the expression in the last line.

Note that patterns can bind values to names - each line in the example binds one or both of the names n and m to the input values. As we learn about different kinds of patterns, we will see that different types of patterns correspond to different ways to choose names from the input arguments.

Simple Patterns

The example code above demonstrates two types of patterns:

  • Integer literals patterns, which match something of type Int, only if the value matches exactly.
  • Variable patterns, which bind their argument to a name

There are other types of simple patterns:

  • Number, String, Char and Boolean literals
  • Wildcard patterns, indicated with an underscore (_), which match any argument, and which do not bind any names.

Here are two more examples which demonstrate using these simple patterns:

fromString :: String -> Boolean
fromString "true" = true
fromString _      = false

toString :: Boolean -> String
toString true  = "true"
toString false = "false"

Try these functions in PSCi.


In the Euclidean algorithm example, we used an if .. then .. else expression to switch between the two alternatives when m > n and m <= n. Another option in this case would be to use a guard.

A guard is a boolean-valued expression which must be satisfied in addition to the constraints imposed by the patterns. Here is the Euclidean algorithm rewritten to use a guard:

gcd :: Int -> Int -> Int
gcd n 0 = n
gcd 0 n = n
gcd n m | n > m     = gcd (n - m) m
        | otherwise = gcd n (m - n)

In this case, the third line uses a guard to impose the extra condition that the first argument is strictly larger than the second.

As this example demonstrates, guards appear on the left of the equals symbol, separated from the list of patterns by a pipe character (|).


  1. (Easy) Write the factorial function using pattern matching. Hint: Consider the two corner cases of zero and non-zero inputs. Note: This is a repeat of an example from the previous chapter, but see if you can rewrite it here on your own.
  2. (Medium) Write a function binomial which finds the coefficient of the x^kth term in the polynomial expansion of (1 + x)^n. This is the same as the number of ways to choose a subset of k elements from a set of n elements. Use the formula n! / k! (n - k)!, where ! is the factorial function written earlier. Hint: Use pattern matching to handle corner cases.
  3. (Medium) Write a function pascal which uses Pascal`s Rule for computing the same binomial coefficients as the previous exercise.

Array Patterns

Array literal patterns provide a way to match arrays of a fixed length. For example, suppose we want to write a function isEmpty which identifies empty arrays. We could do this by using an empty array pattern ([]) in the first alternative:

isEmpty :: forall a. Array a -> Boolean
isEmpty [] = true
isEmpty _ = false

Here is another function which matches arrays of length five, binding each of its five elements in a different way:

takeFive :: Array Int -> Int
takeFive [0, 1, a, b, _] = a * b
takeFive _ = 0

The first pattern only matches arrays with five elements, whose first and second elements are 0 and 1 respectively. In that case, the function returns the product of the third and fourth elements. In every other case, the function returns zero. For example, in PSCi:

> :paste
… takeFive [0, 1, a, b, _] = a * b
… takeFive _ = 0
… ^D

> takeFive [0, 1, 2, 3, 4]

> takeFive [1, 2, 3, 4, 5]

> takeFive []

Array literal patterns allow us to match arrays of a fixed length, but PureScript does not provide any means of matching arrays of an unspecified length, since destructuring immutable arrays in these sorts of ways can lead to poor performance. If you need a data structure which supports this sort of matching, the recommended approach is to use Data.List. Other data structures exist which provide improved asymptotic performance for different operations.

Record Patterns and Row Polymorphism

Record patterns are used to match - you guessed it - records.

Record patterns look just like record literals, but instead of values on the right of the colon, we specify a binder for each field.

For example: this pattern matches any record which contains fields called first and last, and binds their values to the names x and y respectively:

showPerson :: { first :: String, last :: String } -> String
showPerson { first: x, last: y } = y <> ", " <> x

Record patterns provide a good example of an interesting feature of the PureScript type system: row polymorphism. Suppose we had defined showPerson without a type signature above. What would its inferred type have been? Interestingly, it is not the same as the type we gave:

> showPerson { first: x, last: y } = y <> ", " <> x

> :type showPerson
forall r. { first :: String, last :: String | r } -> String

What is the type variable r here? Well, if we try showPerson in PSCi, we see something interesting:

> showPerson { first: "Phil", last: "Freeman" }
"Freeman, Phil"

> showPerson { first: "Phil", last: "Freeman", location: "Los Angeles" }
"Freeman, Phil"

We are able to append additional fields to the record, and the showPerson function will still work. As long as the record contains the first and last fields of type String, the function application is well-typed. However, it is not valid to call showPerson with too few fields:

> showPerson { first: "Phil" }

Type of expression lacks required label "last"

We can read the new type signature of showPerson as "takes any record with first and last fields which are Strings and any other fields, and returns a String".

This function is polymorphic in the row r of record fields, hence the name row polymorphism.

Note that we could have also written

> showPerson p = p.last <> ", " <> p.first

and PSCi would have inferred the same type.

Nested Patterns

Array patterns and record patterns both combine smaller patterns to build larger patterns. For the most part, the examples above have only used simple patterns inside array patterns and record patterns, but it is important to note that patterns can be arbitrarily nested, which allows functions to be defined using conditions on potentially complex data types.

For example, this code combines two record patterns:

type Address = { street :: String, city :: String }

type Person = { name :: String, address :: Address }

livesInLA :: Person -> Boolean
livesInLA { address: { city: "Los Angeles" } } = true
livesInLA _ = false

Named Patterns

Patterns can be named to bring additional names into scope when using nested patterns. Any pattern can be named by using the @ symbol.

For example, this function sorts two-element arrays, naming the two elements, but also naming the array itself:

sortPair :: Array Int -> Array Int
sortPair arr@[x, y]
  | x <= y = arr
  | otherwise = [y, x]
sortPair arr = arr

This way, we save ourselves from allocating a new array if the pair is already sorted.


  1. (Easy) Write a function sameCity which uses record patterns to test whether two Person records belong to the same city.
  2. (Medium) What is the most general type of the sameCity function, taking into account row polymorphism? What about the livesInLA function defined above? Note: There is no test for this exercise.
  3. (Medium) Write a function fromSingleton which uses an array literal pattern to extract the sole member of a singleton array. If the array is not a singleton, your function should return a provided default value. Your function should have type forall a. a -> Array a -> a

Case Expressions

Patterns do not only appear in top-level function declarations. It is possible to use patterns to match on an intermediate value in a computation, using a case expression. Case expressions provide a similar type of utility to anonymous functions: it is not always desirable to give a name to a function, and a case expression allows us to avoid naming a function just because we want to use a pattern.

Here is an example. This function computes "longest zero suffix" of an array (the longest suffix which sums to zero):

import Data.Array (tail)
import Data.Foldable (sum)
import Data.Maybe (fromMaybe)

lzs :: Array Int -> Array Int
lzs [] = []
lzs xs = case sum xs of
           0 -> xs
           _ -> lzs (fromMaybe [] $ tail xs)

For example:

> lzs [1, 2, 3, 4]

> lzs [1, -1, -2, 3]
[-1, -2, 3]

This function works by case analysis. If the array is empty, our only option is to return an empty array. If the array is non-empty, we first use a case expression to split into two cases. If the sum of the array is zero, we return the whole array. If not, we recurse on the tail of the array.

Pattern Match Failures and Partial Functions

If patterns in a case expression are tried in order, then what happens in the case when none of the patterns in a case alternatives match their inputs? In this case, the case expression will fail at runtime with a pattern match failure.

We can see this behavior with a simple example:

import Partial.Unsafe (unsafePartial)

partialFunction :: Boolean -> Boolean
partialFunction = unsafePartial \true -> true

This function contains only a single case, which only matches a single input, true. If we compile this file, and test in PSCi with any other argument, we will see an error at runtime:

> partialFunction false

Failed pattern match

Functions which return a value for any combination of inputs are called total functions, and functions which do not are called partial.

It is generally considered better to define total functions where possible. If it is known that a function does not return a result for some valid set of inputs, it is usually better to return a value with type Maybe a for some a, using Nothing to indicate failure. This way, the presence or absence of a value can be indicated in a type-safe way.

The PureScript compiler will generate an error if it can detect that your function is not total due to an incomplete pattern match. The unsafePartial function can be used to silence these errors (if you are sure that your partial function is safe!) If we removed the call to the unsafePartial function above, then the compiler would generate the following error:

A case expression could not be determined to cover all inputs.
The following additional cases are required to cover all inputs:


This tells us that the value false is not matched by any pattern. In general, these warnings might include multiple unmatched cases.

If we also omit the type signature above:

partialFunction true = true

then PSCi infers a curious type:

> :type partialFunction

Partial => Boolean -> Boolean

We will see more types which involve the => symbol later on in the book (they are related to type classes), but for now, it suffices to observe that PureScript keeps track of partial functions using the type system, and that we must explicitly tell the type checker when they are safe.

The compiler will also generate a warning in certain cases when it can detect that cases are redundant (that is, a case only matches values which would have been matched by a prior case):

redundantCase :: Boolean -> Boolean
redundantCase true = true
redundantCase false = false
redundantCase false = false

In this case, the last case is correctly identified as redundant:

A case expression contains unreachable cases:


Note: PSCi does not show warnings, so to reproduce this example, you will need to save this function as a file and compile it using spago build.

Algebraic Data Types

This section will introduce a feature of the PureScript type system called Algebraic Data Types (or ADTs), which are fundamentally related to pattern matching.

However, we'll first consider a motivating example, which will provide the basis of a solution to this chapter's problem of implementing a simple vector graphics library.

Suppose we wanted to define a type to represent some simple shapes: lines, rectangles, circles, text, etc. In an object oriented language, we would probably define an interface or abstract class Shape, and one concrete subclass for each type of shape that we wanted to be able to work with.

However, this approach has one major drawback: to work with Shapes abstractly, it is necessary to identify all of the operations one might wish to perform, and to define them on the Shape interface. It becomes difficult to add new operations without breaking modularity.

Algebraic data types provide a type-safe way to solve this sort of problem, if the set of shapes is known in advance. It is possible to define new operations on Shape in a modular way, and still maintain type-safety.

Here is how Shape might be represented as an algebraic data type:

data Shape
  = Circle Point Number
  | Rectangle Point Number Number
  | Line Point Point
  | Text Point String

The Point type might also be defined as an algebraic data type, as follows:

data Point = Point
  { x :: Number
  , y :: Number

The Point data type illustrates some interesting points:

  • The data carried by an ADT's constructors doesn't have to be restricted to primitive types: constructors can include records, arrays, or even other ADTs.
  • Even though ADTs are useful for describing data with multiple constructors, they can also be useful when there is only a single constructor.
  • The constructors of an algebraic data type might have the same name as the ADT itself. This is quite common, and it is important not to confuse the Point type constructor with the Point data constructor - they live in different namespaces.

This declaration defines Shape as a sum of different constructors, and for each constructor identifies the data that is included. A Shape is either a Circle which contains a center Point and a radius (a number), or a Rectangle, or a Line, or Text. There are no other ways to construct a value of type Shape.

An algebraic data type is introduced using the data keyword, followed by the name of the new type and any type arguments. The type's constructors (i.e. its data constructors) are defined after the equals symbol, and are separated by pipe characters (|).

Let's see another example from PureScript's standard libraries. We saw the Maybe type, which is used to define optional values, earlier in the book. Here is its definition from the maybe package:

data Maybe a = Nothing | Just a

This example demonstrates the use of a type parameter a. Reading the pipe character as the word "or", its definition almost reads like English: "a value of type Maybe a is either Nothing, or Just a value of type a".

Data constructors can also be used to define recursive data structures. Here is one more example, defining a data type of singly-linked lists of elements of type a:

data List a = Nil | Cons a (List a)

This example is taken from the lists package. Here, the Nil constructor represents an empty list, and Cons is used to create non-empty lists from a head element and a tail. Notice how the tail is defined using the data type List a, making this a recursive data type.

Using ADTs

It is simple enough to use the constructors of an algebraic data type to construct a value: simply apply them like functions, providing arguments corresponding to the data included with the appropriate constructor.

For example, the Line constructor defined above required two Points, so to construct a Shape using the Line constructor, we have to provide two arguments of type Point:

exampleLine :: Shape
exampleLine = Line p1 p2
    p1 :: Point
    p1 = Point { x: 0.0, y: 0.0 }

    p2 :: Point
    p2 = Point { x: 100.0, y: 50.0 }

To construct the points p1 and p2, we apply the Point constructor to its single argument, which is a record.

So, constructing values of algebraic data types is simple, but how do we use them? This is where the important connection with pattern matching appears: the only way to consume a value of an algebraic data type is to use a pattern to match its constructor.

Let's see an example. Suppose we want to convert a Shape into a String. We have to use pattern matching to discover which constructor was used to construct the Shape. We can do this as follows:

showPoint :: Point -> String
showPoint (Point { x: x, y: y }) =
  "(" <> show x <> ", " <> show y <> ")"

showShape :: Shape -> String
showShape (Circle c r)      = ...
showShape (Rectangle c w h) = ...
showShape (Line start end)  = ...
showShape (Text p text) = ...

Each constructor can be used as a pattern, and the arguments to the constructor can themselves be bound using patterns of their own. Consider the first case of showShape: if the Shape matches the Circle constructor, then we bring the arguments of Circle (center and radius) into scope using two variable patterns, c and r. The other cases are similar.

showPoint is another example of pattern matching. In this case, there is only a single case, but we use a nested pattern to match the fields of the record contained inside the Point constructor.

Record Puns

The showPoint function matches a record inside its argument, binding the x and y properties to values with the same names. In PureScript, we can simplify this sort of pattern match as follows:

showPoint :: Point -> String
showPoint (Point { x, y }) = ...

Here, we only specify the names of the properties, and we do not need to specify the names of the values we want to introduce. This is called a record pun.

It is also possible to use record puns to construct records. For example, if we have values named x and y in scope, we can construct a Point using Point { x, y }:

origin :: Point
origin = Point { x, y }
    x = 0.0
    y = 0.0

This can be useful for improving readability of code in some circumstances.


  1. (Easy) Write a function circleAtOrigin which constructs a Circle (of type Shape) centered at the origin with radius 10.0.
  2. (Medium) Write a function doubleScaleAndCenter which scales the size of a Shape by a factor of 2.0 and centers it at the origin.
  3. (Medium) Write a function shapeText which extracts the text from a Shape. It should return Maybe String, and use the Nothing constructor if the input is not constructed using Text.


There is an important special case of algebraic data types, called newtypes. Newtypes are introduced using the newtype keyword instead of the data keyword.

Newtypes must define exactly one constructor, and that constructor must take exactly one argument. That is, a newtype gives a new name to an existing type. In fact, the values of a newtype have the same runtime representation as the underlying type. They are, however, distinct from the point of view of the type system. This gives an extra layer of type safety.

As an example, we might want to define newtypes as type-level aliases for Number, to ascribe units like pixels and inches:

newtype Pixels = Pixels Number
newtype Inches = Inches Number

This way, it is impossible to pass a value of type Pixels to a function which expects Inches, but there is no runtime performance overhead.

Newtypes will become important when we cover type classes in the next chapter, since they allow us to attach different behavior to a type without changing its representation at runtime.

A Library for Vector Graphics

Let's use the data types we have defined above to create a simple library for using vector graphics.

Define a type synonym for a Picture - just an array of Shapes:

type Picture = Array Shape

For debugging purposes, we'll want to be able to turn a Picture into something readable. The showPicture function lets us do that:

showPicture :: Picture -> Array String
showPicture = map showShape

Let's try it out. Compile your module with spago build and open PSCi with spago repl:

$ spago build
$ spago repl

> import Data.Picture

> :paste
… showPicture
…   [ Line (Point { x: 0.0, y: 0.0 })
…          (Point { x: 1.0, y: 1.0 })
…   ]
… ^D

["Line [start: (0.0, 0.0), end: (1.0, 1.0)]"]

Computing Bounding Rectangles

The example code for this module contains a function bounds which computes the smallest bounding rectangle for a Picture.

The Bounds data type defines a bounding rectangle. It is also defined as an algebraic data type with a single constructor:

data Bounds = Bounds
  { top    :: Number
  , left   :: Number
  , bottom :: Number
  , right  :: Number

bounds uses the foldl function from Data.Foldable to traverse the array of Shapes in a Picture, and accumulate the smallest bounding rectangle:

bounds :: Picture -> Bounds
bounds = foldl combine emptyBounds
    combine :: Bounds -> Shape -> Bounds
    combine b shape = union (shapeBounds shape) b

In the base case, we need to find the smallest bounding rectangle of an empty Picture, and the empty bounding rectangle defined by emptyBounds suffices.

The accumulating function combine is defined in a where block. combine takes a bounding rectangle computed from foldl's recursive call, and the next Shape in the array, and uses the union function to compute the union of the two bounding rectangles. The shapeBounds function computes the bounds of a single shape using pattern matching.


  1. (Medium) Extend the vector graphics library with a new operation area which computes the area of a Shape. For the purpose of this exercise, the area of a line or a piece of text is assumed to be zero.
  2. (Difficult) Extend the Shape type with a new data constructor Clipped, which clips another Picture to a rectangle. Extend the shapeBounds function to compute the bounds of a clipped picture. Note that this makes Shape into a recursive data type.


In this chapter, we covered pattern matching, a basic but powerful technique from functional programming. We saw how to use simple patterns as well as array and record patterns to match parts of deep data structures.

This chapter also introduced algebraic data types, which are closely related to pattern matching. We saw how algebraic data types allow concise descriptions of data structures, and provide a modular way to extend data types with new operations.

Finally, we covered row polymorphism, a powerful type of abstraction which allows many idiomatic JavaScript functions to be given a type.

In the rest of the book, we will use ADTs and pattern matching extensively, so it will pay dividends to become familiar with them now. Try creating your own algebraic data types and writing functions to consume them using pattern matching.