Generative Testing
Chapter Goals
In this chapter, we will see a particularly elegant application of type classes to the problem of testing. Instead of testing our code by telling the compiler how to test, we simply assert what properties our code should have. Test cases can be generated randomly from this specification, using type classes to hide the boilerplate code of random data generation. This is called generative testing (or propertybased testing), a technique made popular by the QuickCheck library in Haskell.
The quickcheck
package is a port of Haskell's QuickCheck library to PureScript, and for the most part, it preserves the types and syntax of the original library. We will see how to use quickcheck
to test a simple library, using Spago to integrate our test suite into our development process.
Project Setup
This chapter's project adds quickcheck
as a dependency.
In a Spago project, test sources should be placed in the test
directory, and the main module for the test suite should be named Test.Main
. The test suite can be run using the spago test
command.
Writing Properties
The Merge
module implements a simple function merge
, which we will use to demonstrate the features of the quickcheck
library.
merge :: Array Int > Array Int > Array Int
merge
takes two sorted arrays of integers, and merges their elements so that the result is also sorted. For example:
> import Merge
> merge [1, 3, 5] [2, 4, 5]
[1, 2, 3, 4, 5, 5]
In a typical test suite, we might test merge
by generating a few small test cases like this by hand, and asserting that the results were equal to the appropriate values. However, everything we need to know about the merge
function can be summarized by this property:
 If
xs
andys
are sorted, thenmerge xs ys
is the sorted result of both arrays appended together.
quickcheck
allows us to test this property directly, by generating random test cases. We simply state the properties that we want our code to have, as functions. In this case, we have a single property:
main = do
quickCheck \xs ys >
eq (merge (sort xs) (sort ys)) (sort $ xs <> ys)
When we run this code, quickcheck
will attempt to disprove the properties we claimed, by generating random inputs xs
and ys
, and passing them to our functions. If our function returns false
for any inputs, the property will be incorrect, and the library will raise an error. Fortunately, the library is unable to disprove our properties after generating 100 random test cases:
$ spago test
Installation complete.
Build succeeded.
100/100 test(s) passed.
...
Tests succeeded.
If we deliberately introduce a bug into the merge
function (for example, by changing the lessthan check for a greaterthan check), then an exception is thrown at runtime after the first failed test case:
Error: Test 1 failed:
Test returned false
As we can see, this error message is not very helpful, but it can be improved with a little work.
Improving Error Messages
To provide error messages along with our failed test cases, quickcheck
provides the <?>
operator. Simply separate the property definition from the error message using <?>
, as follows:
quickCheck \xs ys >
let
result = merge (sort xs) (sort ys)
expected = sort $ xs <> ys
in
eq result expected <?> "Result:\n" <> show result <> "\nnot equal to expected:\n" <> show expected
This time, if we modify the code to introduce a bug, we see our improved error message after the first failed test case:
Error: Test 1 (seed 534161891) failed:
Result:
[822215,196136,116841,618343,887447,888285]
not equal to expected:
[888285,822215,196136,116841,618343,887447]
Notice how the input xs
and ys
were generated as arrays of randomlyselected integers.
Exercises
 (Easy) Write a property which asserts that merging an array with the empty array does not modify the original array. Note: This new property is redundant, since this situation is already covered by our existing property. We're just trying to give you readers a simple way to practice using quickCheck.
 (Easy) Add an appropriate error message to the remaining property for
merge
.
Testing Polymorphic Code
The Merge
module defines a generalization of the merge
function, called mergePoly
, which works not only with arrays of numbers, but also arrays of any type belonging to the Ord
type class:
mergePoly :: forall a. Ord a => Array a > Array a > Array a
If we modify our original test to use mergePoly
in place of merge
, we see the following error message:
No type class instance was found for
Test.QuickCheck.Arbitrary.Arbitrary t0
The instance head contains unknown type variables.
Consider adding a type annotation.
This error message indicates that the compiler could not generate random test cases, because it did not know what type of elements we wanted our arrays to have. In these sorts of cases, we can use type annotations to force the compiler to infer a particular type, such as Array Int
:
quickCheck \xs ys >
eq (mergePoly (sort xs) (sort ys) :: Array Int) (sort $ xs <> ys)
We can alternatively use a helper function to specify type, which may result in cleaner code. For example, if we define a function ints
as a synonym for the identity function:
ints :: Array Int > Array Int
ints = id
then we can modify our test so that the compiler infers the type Array Int
for our two array arguments:
quickCheck \xs ys >
eq (ints $ mergePoly (sort xs) (sort ys)) (sort $ xs <> ys)
Here, xs
and ys
both have type Array Int
, since the ints
function has been used to disambiguate the unknown type.
Exercises
 (Easy) Write a function
bools
which forces the types ofxs
andys
to beArray Boolean
, and add additional properties which testmergePoly
at that type.  (Medium) Choose a pure function from the core libraries (for example, from the
arrays
package), and write a QuickCheck property for it, including an appropriate error message. Your property should use a helper function to fix any polymorphic type arguments to eitherInt
orBoolean
.
Generating Arbitrary Data
Now we will see how the quickcheck
library is able to randomly generate test cases for our properties.
Those types whose values can be randomly generated are captured by the Arbitrary
type class:
class Arbitrary t where
arbitrary :: Gen t
The Gen
type constructor represents the sideeffects of deterministic random data generation. It uses a pseudorandom number generator to generate deterministic random function arguments from a seed value. The Test.QuickCheck.Gen
module defines several useful combinators for building generators.
Gen
is also a monad and an applicative functor, so we have the usual collection of combinators at our disposal for creating new instances of the Arbitrary
type class.
For example, we can use the Arbitrary
instance for the Int
type, provided in the quickcheck
library, to create a distribution on the 256 byte values, using the Functor
instance for Gen
to map a function from integers to bytes over arbitrary integer values:
newtype Byte = Byte Int
instance arbitraryByte :: Arbitrary Byte where
arbitrary = map intToByte arbitrary
where
intToByte n  n >= 0 = Byte (n `mod` 256)
 otherwise = intToByte (n)
Here, we define a type Byte
of integral values between 0 and 255. The Arbitrary
instance uses the map
function to lift the intToByte
function over the arbitrary
action. The type of the inner arbitrary
action is inferred as Gen Int
.
We can also use this idea to improve our test for merge
:
quickCheck \xs ys >
eq (numbers $ mergePoly (sort xs) (sort ys)) (sort $ xs <> ys)
In this test, we generated arbitrary arrays xs
and ys
, but had to sort them, since merge
expects sorted input. On the other hand, we could create a newtype representing sorted arrays, and write an Arbitrary
instance which generates sorted data:
newtype Sorted a = Sorted (Array a)
sorted :: forall a. Sorted a > Array a
sorted (Sorted xs) = xs
instance arbSorted :: (Arbitrary a, Ord a) => Arbitrary (Sorted a) where
arbitrary = map (Sorted <<< sort) arbitrary
With this type constructor, we can modify our test as follows:
quickCheck \xs ys >
eq (ints $ mergePoly (sorted xs) (sorted ys)) (sort $ sorted xs <> sorted ys)
This may look like a small change, but the types of xs
and ys
have changed to Sorted Int
, instead of just Array Int
. This communicates our intent in a clearer way  the mergePoly
function takes sorted input. Ideally, the type of the mergePoly
function itself would be updated to use the Sorted
type constructor.
As a more interesting example, the Tree
module defines a type of sorted binary trees with values at the branches:
data Tree a
= Leaf
 Branch (Tree a) a (Tree a)
The Tree
module defines the following API:
insert :: forall a. Ord a => a > Tree a > Tree a
member :: forall a. Ord a => a > Tree a > Boolean
fromArray :: forall a. Ord a => Array a > Tree a
toArray :: forall a. Tree a > Array a
The insert
function is used to insert a new element into a sorted tree, and the member
function can be used to query a tree for a particular value. For example:
> import Tree
> member 2 $ insert 1 $ insert 2 Leaf
true
> member 1 Leaf
false
The toArray
and fromArray
functions can be used to convert sorted trees to and from arrays. We can use fromArray
to write an Arbitrary
instance for trees:
instance arbTree :: (Arbitrary a, Ord a) => Arbitrary (Tree a) where
arbitrary = map fromArray arbitrary
We can now use Tree a
as the type of an argument to our test properties, whenever there is an Arbitrary
instance available for the type a
. For example, we can test that the member
test always returns true
after inserting a value:
quickCheck \t a >
member a $ insert a $ treeOfInt t
Here, the argument t
is a randomlygenerated tree of type Tree Int
, where the type argument disambiguated by the identity function treeOfInt
.
Exercises
 (Medium) Create a newtype for
String
with an associatedArbitrary
instance which generates collections of randomlyselected characters in the rangeaz
. Hint: use theelements
andarrayOf
functions from theTest.QuickCheck.Gen
module.  (Difficult) Write a property which asserts that a value inserted into a tree is still a member of that tree after arbitrarily many more insertions.
Testing HigherOrder Functions
The Merge
module defines another generalization of the merge
function  the mergeWith
function takes an additional function as an argument which is used to determine the order in which elements should be merged. That is, mergeWith
is a higherorder function.
For example, we can pass the length
function as the first argument, to merge two arrays which are already in lengthincreasing order. The result should also be in lengthincreasing order:
> import Data.String
> mergeWith length
["", "ab", "abcd"]
["x", "xyz"]
["","x","ab","xyz","abcd"]
How might we test such a function? Ideally, we would like to generate values for all three arguments, including the first argument which is a function.
There is a second type class which allows us to create randomlygenerated functions. It is called Coarbitrary
, and it is defined as follows:
class Coarbitrary t where
coarbitrary :: forall r. t > Gen r > Gen r
The coarbitrary
function takes a function argument of type t
, and a random generator for a function result of type r
, and uses the function argument to perturb the random generator. That is, it uses the function argument to modify the random output of the random generator for the result.
In addition, there is a type class instance which gives us Arbitrary
functions if the function domain is Coarbitrary
and the function codomain is Arbitrary
:
instance arbFunction :: (Coarbitrary a, Arbitrary b) => Arbitrary (a > b)
In practice, this means that we can write properties which take functions as arguments. In the case of the mergeWith
function, we can generate the first argument randomly, modifying our tests to take account of the new argument.
We cannot guarantee that the result will be sorted  we do not even necessarily have an Ord
instance  but we can expect that the result be sorted with respect to the function f
that we pass in as an argument. In addition, we need the two input arrays to be sorted with respect to f
, so we use the sortBy
function to sort xs
and ys
based on comparison after the function f
has been applied:
quickCheck \xs ys f >
let
result =
map f $
mergeWith (intToBool f)
(sortBy (compare `on` f) xs)
(sortBy (compare `on` f) ys)
expected =
map f $
sortBy (compare `on` f) $ xs <> ys
in
eq result expected
Here, we use a function intToBool
to disambiguate the type of the function f
:
intToBool :: (Int > Boolean) > Int > Boolean
intToBool = id
In addition to being Arbitrary
, functions are also Coarbitrary
:
instance coarbFunction :: (Arbitrary a, Coarbitrary b) => Coarbitrary (a > b)
This means that we are not limited to just values and functions  we can also randomly generate higherorder functions, or functions whose arguments are higherorder functions, and so on.
Writing Coarbitrary Instances
Just as we can write Arbitrary
instances for our data types by using the Monad
and Applicative
instances of Gen
, we can write our own Coarbitrary
instances as well. This allows us to use our own data types as the domain of randomlygenerated functions.
Let's write a Coarbitrary
instance for our Tree
type. We will need a Coarbitrary
instance for the type of the elements stored in the branches:
instance coarbTree :: Coarbitrary a => Coarbitrary (Tree a) where
We have to write a function which perturbs a random generator given a value of type Tree a
. If the input value is a Leaf
, then we will just return the generator unchanged:
coarbitrary Leaf = id
If the tree is a Branch
, then we will perturb the generator using the left subtree, the value, and the right subtree. We use function composition to create our perturbing function:
coarbitrary (Branch l a r) =
coarbitrary l <<<
coarbitrary a <<<
coarbitrary r
Now we are free to write properties whose arguments include functions taking trees as arguments. For example, the Tree
module defines a function anywhere
, which tests if a predicate holds on any subtree of its argument:
anywhere :: forall a. (Tree a > Boolean) > Tree a > Boolean
Now we are able to generate the predicate function randomly. For example, we expect the anywhere
function to respect disjunction:
quickCheck \f g t >
anywhere (\s > f s  g s) t ==
anywhere f (treeOfInt t)  anywhere g t
Here, the treeOfInt
function is used to fix the type of values contained in the tree to the type Int
:
treeOfInt :: Tree Int > Tree Int
treeOfInt = id
Testing Without SideEffects
For the purposes of testing, we usually include calls to the quickCheck
function in the main
action of our test suite. However, there is a variant of the quickCheck
function, called quickCheckPure
which does not use sideeffects. Instead, it is a pure function which takes a random seed as an input, and returns an array of test results.
We can test quickCheckPure
using PSCi. Here, we test that the merge
operation is associative:
> import Prelude
> import Merge
> import Test.QuickCheck
> import Test.QuickCheck.LCG (mkSeed)
> :paste
… quickCheckPure (mkSeed 12345) 10 \xs ys zs >
… ((xs `merge` ys) `merge` zs) ==
… (xs `merge` (ys `merge` zs))
… ^D
Success : Success : ...
quickCheckPure
takes three arguments: the random seed, the number of test cases to generate, and the property to test. If all tests pass, you should see an array of Success
data constructors printed to the console.
quickCheckPure
might be useful in other situations, such as generating random input data for performance benchmarks, or generating sample form data for web applications.
Exercises

(Easy) Write
Coarbitrary
instances for theByte
andSorted
type constructors. 
(Medium) Write a (higherorder) property which asserts associativity of the
mergeWith f
function for any functionf
. Test your property in PSCi usingquickCheckPure
. 
(Medium) Write
Arbitrary
andCoarbitrary
instances for the following data type:data OneTwoThree a = One a  Two a a  Three a a a
Hint: Use the
oneOf
function defined inTest.QuickCheck.Gen
to define yourArbitrary
instance. 
(Medium) Use
all
to simplify the result of thequickCheckPure
function  your new function should have typeList Result > Boolean
and should returntrue
if every test passes andfalse
otherwise. 
(Medium) As another approach to simplifying the result of
quickCheckPure
, try writing a functionsquashResults :: List Result > Result
. Consider using theFirst
monoid fromData.Maybe.First
with thefoldMap
function to preserve the first error in case of failure.
Conclusion
In this chapter, we met the quickcheck
package, which can be used to write tests in a declarative way using the paradigm of generative testing. In particular:
 We saw how to automate QuickCheck tests using
spago test
.  We saw how to write properties as functions, and how to use the
<?>
operator to improve error messages.  We saw how the
Arbitrary
andCoarbitrary
type classes enable generation of boilerplate testing code, and how they allow us to test higherorder properties.  We saw how to implement custom
Arbitrary
andCoarbitrary
instances for our own data types.